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Abstract. In this work we study the condition number of the least square matrix corresponding to scale
free networks. We compute a theoretical lower bound of the condition number which proves that they
are ill conditioned. Also, we analyze several matrices from networks generated with Linear Preferential
Attachment, Edge Redirection and Attach to Edges models, showing that it is very difficult to compute
the power law exponent by the least square method due to the severe lost of accuracy expected from the
corresponding condition numbers.

PACS. 02.60.Dc Numerical linear algebra – 05.10Ln Monte Carlo methods – 89.75.-k Complex systems

1 Introduction

The problem of fitting data by means of an underlying
model is a common issue in science. Among several meth-
ods, the least square method (LSM) is widely used in lin-
ear and non linear cases. It is well known that even in
the former (and simpler) case some stability analysis is
required in order to evaluate in advance how the errors
in the empirical data could be propagated to the model’s
coefficients.

For linear systems of equations (like those arising from
linear models in the LSM) the condition number of the in-
volved matrix [1] measures precisely how relative errors in
the data can be magnified during the computation of the
solution. In some way, “large” condition numbers imply
a loss of accuracy in the solutions of the system. How-
ever, since relative errors are considered, the same condi-
tion number which can be regarded as harmless when the
error source comes from floating point rounding matters
(an important issue in numerical analysis) could be un-
acceptable when empirical measurements are taking into
account.

Ill conditioned matrices are usually found in large lin-
ear systems. Nevertheless we will show that this is also the
case for 2 × 2 matrices corresponding to LSM whenever
the assumed independent variable ranges across several
scales.

In statistics practice the cutoff value for the condi-
tion number is 225, since the effects of collinearity be-
come strong when it exceeds this value. Condition num-
bers greater than 900 seems to be large indeed, causing
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substantial variance inflation and degrade regression es-
timates (see [2–4]). Experiment design could compensate
the numerical error due to ill conditioned matrices by per-
forming several measurements for a fixed value of the in-
dependent variable, which gives an error in the measured
data decreasing as the inverse of the number of measure-
ments. However, in the case of networks, it is not always
clear how to reduce the measurement errors. Let us note
that even the process of data mining could change severely
the exponents (see for example [5,6]). For instance, in
econometrics practice, where the data is collected and
there is no hope to perform more experiments, condition
numbers between 225 and 900 are again the borderline
case suggesting strong collinearity [7].

In recent years many real problems have arisen in
the literature with data ranging across several scales, like
the distribution of populations or wealth, [8,9], name fre-
quencies, and web hits, among several others. We refer
to Figure 4 in [10] for several cumulative distributions of
ranks/frequency plots.

Also, the analysis of small world networks offers a chal-
lenge to LSM matrices, since the size of the networks —
the number of nodes — could attain very huge values. For
example several networks related to Internet routers and
domains, the World Wide Web, citations and coauthors
in different fields and databases, words, and phone calls,
range from ∼104 to ∼108 nodes (see tables 1 and 2 in [11]
and references therein).

The cumulative and node degree distributions of these
networks seem to follow a power law. Also, several mod-
els of graph growth were presented in order to explain
the emergence of the supposed power law distribution
(see [12–14] among others) although harsh criticism has
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appeared. Sometimes, the accuracy of the data fitting for
different power law distributions was questioned, as re-
ported in [10] (where different methods were considered
to avoid the linear fit on the log log scale, such as log-
arithmic binning or maximum likelihood estimators), or
in [15] (where several biological networks were reconsid-
ered). Also, in [16], the power law character of node dis-
tributions of human sexual contacts networks and email
traffic was challenged; as well as the power law character
of time intervals for e-mail communications (see [17]).

A different problem was studied in [5,6,18–22], mainly
focusing on sampling bias. We may think that the large x
range could be shortened by selecting small samples of a
given network. However, the results in those papers show
that this is not the case. For example, the reliability of the
data was questioned [18]; even random networks can be
mistaken as scale free networks selecting random nodes [5];
and different search algorithms give different exponents for
a same scale free network [6].

Finally, a simple and striking experiment was recently
presented in [23]. The authors obtained a computation-
ally generated dataset of 10.000 samples using a random
deviate generator to produce a zeta (power law) distribu-
tion with exponent γ = 2.500, and they tried to recover
the exponent with different methods from the data. For
the linear fit on the log log scale, a severe bias error was
reported of 36%, since the mean exponent estimated was
1.590; for logarithmic bins, the estimated exponent was
1.777, that is, an error of 29%. Although the work [23]
shows that the broadly used fitting methods tend to pro-
vide biased estimates for the power law exponent, there
are no hints or explanations about how this happens. In
contradistinction to the works mentioned in the previous
paragraph, the errors in [23] cannot be related to sampling
bias or data reliability.

In this work we present an underlying problem which
explains those errors: as mentioned before, the matrix in
the least square method is ill-conditioned. More precisely,
calling n the maximum degree of the network, we show
that the condition number grows at least as a power of
the logarithm of n.

We also introduce a parameter c ∈ [0, 1] and we con-
sider only the node degree distribution on [cn, n]. In fact,
this is a common procedure, since the decay of node de-
gree distribution usually begins at a certain point xmin,
see [10]. Thus, we may consider c as xmin/n and we took
c = 0, c = 0.05 and c = 0.1 for computations. Numeri-
cal computations show that the situation becomes worse
when we focus on the tail of the distribution in this way.

Our results complement those in [15], where biolog-
ical networks were considered and a different statistical
problem arose, since on that work the power law fit was
performed with the maximum likelihood method. On the
other hand, our results explain the situation in [23], where
the causes of the severe error were not shown.

Also, we compute the matrix condition for scale free
graphs generated with three models of graph generation:
the Linear Preferential Attachment model (LPA) intro-
duced by Barabasi and Albert [12], where one target node

is selected at random, with a probability proportional to
the degree of each node; the Edge Redirection method
(ER) of Krapivsky and Redner [13], where the target node
is selected at random with uniform probability, and then
with probability 1− r is changed by the node it points to;
and the Attach to Edges model (ATE) of Dorogovtsev,
Mendes and Samukhin [14], where one link is selected at
random with uniform probability (among the links) and
the new node connects to both ends of the chosen link. We
show that the matrix condition grows as expected when
the network size increases in all of them.

2 Main results

2.1 Condition number

The results on this subsection are well known and could
be found in any textbook of numerical analysis; we refer
the interested reader to [1,2] for an advanced exposition.

For a given matrix A ∈ Rm×m, and a matrix norm ‖.‖,
the condition number is defined as

cond(A) = ‖A‖‖A−1‖, cond(A) = ∞ if det(A) = 0

Usually, for the 2-norm the condition is denoted cond(A)2.
The 2-norm is an operator type norm, i.e. for v ∈ Rm,
taking the vectorial Euclidean norm

‖v‖2 :=

(
m∑

i=1

|vi|2
) 1

2

we have

‖A‖2 = sup{‖Av‖2 : ‖v‖2 = 1}.
Concerning the condition number, the following results
are well known for symmetric matrices:

cond(A)2 =
λmax

λmin
. (1)

where λmin and λmax are respectively the minimum and
maximum eigenvalues (in absolute value), and

1
cond(A)2

= inf
{‖A − S‖2

‖A‖2
: S singular

}
(2)

which says that cond(A)2 is the reciprocal of the relative
distance of A to the set of singular matrices.

The interest in the condition number for matrices is
related to the accuracy of computations, since it gives a
bound for the propagation of the relative error in the data
when a linear system is solved. If cond(A) ∼ 10k, then k
is roughly the number of significant figures we can expect
to lose in computations.

More precisely, for a general system Ax = b, if we
consider a perturbation on the right hand side b̃, then
calling x̃ to the exact solution of Ax̃ = b̃ it can be shown
that

‖x − x̃‖2

‖x‖2
≤ cond(A)2

‖b − b̃‖2

‖b‖2
.
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Let us note that in our case A is not the matrix of con-
nections of the underlying graph or network, but the sym-
metric matrix corresponding to the least square fit.

2.2 Theoretical results

Let us consider a graph G with k nodes x1, · · · , xk, and
let d(xi) be the degree of node xi, that is, the number of
links emanating from xi. Let us define

n = max{d(xi) : 1 ≤ i ≤ k}.
As proved in [24] for the ER model with parameter r, n
grows as k(1−r), where N is the total number of nodes.

For each j, 1 ≤ j ≤ n, let h(j) be the number of nodes
with degree j. The existence of a power law dependence
h(d) = adγ is usually observed in a log-log plot, and its
parameters are computed with the least square method
after a logarithmic change of variables.

We first assume that the degrees span the full integer
interval [1, n]. In this case the matrix An corresponding
to the least square fit, regardless of the measured data, is
given by

An =
(

n
∑n

j=1 ln(j)∑n
j=1 ln(j)

∑n
j=1 ln2(j)

)
. (3)

In a certain sense, this corresponds to the best situation,
where the data span the full range of variables. The fol-
lowing result estimates the condition number of An, when
n → ∞:

Theorem 1 For n large, it holds

cond(An)2 ∼ ln4(n)

Proof : We use here (1). A straightforward computation
of the eigenvalues of An gives

2λmax =
(
n +

n∑
j=1

ln2(j)
)

+
√

∆ (4)

2λmin =
(
n +

n∑
j=1

ln2(j)
)
−
√

∆, (5)

where

∆ =
(
n −

n∑
j=1

ln2(j)
)2

+ 4
( n∑

j=1

ln(j)
)2

.

For n large we can write

n∑
j=1

ln(j) ∼ n(ln(n) − 1)) + O(ln(n))

and
n∑

j=1

ln2(j) ∼ n(ln2(n) − 2 ln(n) + 2) + O(ln2(n)).

Replacing this expressions in (4) and (5), we get by taking
limit

lim
n→∞

λmax

λmin

ln4(n)
= 1.

Since in practice logarithmic bin is preferred (see for ex-
ample [10]), due to the sparsity of measurements at the
tail of the distribution, our next result shows that also the
corresponding matrix is ill conditioned. We suppose that
the selected degrees for the computation are of the form
ej with 1 ≤ j ≤ n. Calling Aen the corresponding least
square matrix, we can write

Aen =
(

n
∑n

j=1 j∑n
j=1 j

∑n
j=1 j2

)
=

(
n n(n+1)

2
n(n+1)

2
n(n+1)(2n+1)

6

)
.

And the following holds

Theorem 2 For n large

cond(Aen)2 ∼ 4
3
n2.

Proof : Using again (1), and computing explicitly the
eigenvalues of Aen , we have

λmax

λmin
=

2n2 + 3n + 7 +
√

4n4 + 12n3 + 25n2 + 42n + 61
2n2 + 3n + 7 −√

4n4 + 12n3 + 25n2 + 42n + 61

Hence, for n large

cond(Aen)2 =
λmax

λmin
∼ 4

3
n2.

Taking bins of the form abj , 1 ≤ j ≤ n for values of (a, b)
other than (1, e) does not help either: it can be shown that
the condition number does not depend on a nor b in the
limit n → ∞. We show condition numbers for logarithmic
bins in Table 1; the effect of discarding a few values (which
is usually necessary) is also shown.

2.3 Numerical computations

In this section we present several numerical computations
of matrix conditions.

We computed the condition number of matrix An nu-
merically. We also computed the condition number of the
truncated matrix An: for each n we took the matrix ob-
tained with degree values between cn and n. The results
are shown in Figure 1 for n ≤ 1000 with c = 0 and c = 0.1.

We show the dependence on c in Figure 2. Also, in
Table 1 we show the condition number of the matrix Aen

with logarithmic bins.
Finally, we considered three models used to generate

scale free graphs: Linear Preferential Attachment (LPA),
Edge Redirection (ER) and Attach to Edges (ATE). See
the introduction for short explanations and references.
We averaged condition numbers for graphs generated with
each of these models. We present the results in Tables 2–4.
Actually, LPA is a special case of ER (for r = 0.5),
but these models are highly sensitive to initial conditions,
which explains small differences between them.
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Fig. 1. Condition number of the least square matrix An, see
equation (3), for n ≤ 1000. The critical value 225 is reached
for low values of n.
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Fig. 2. Condition number of An as a function of c, 0 ≤ c ≤ 0.5,
where c measures the fraction of neglected degrees. Condition
number increases when focusing on the tail.

Table 1. Condition number with logarithmic bins

ej , r ≤ j ≤ n r = 1 r = 2 r = 3 r = 4

n = 5 69.99 166.19 466.16 1847.00
n = 10 187.12 284.01 446.05 727.00
n = 15 373.00 490.94 656.28 891.15
n = 20 625.98 768.13 951.06 1188.04
n = 25 945.77 1113.23 1318.02 1569.48
n = 30 1332.30 1525.56 1754.05 2024.93

3 Conclusions

We have studied the condition number of the least square
matrix corresponding to scale free networks. We computed
theoretical lower bounds of the condition numbers show-
ing that it behaves roughly as a power of the logarithm of
the maximum degree of the network, and numerical simu-
lations support this fact. We also showed that neglecting
the less connected nodes of the network (a usual practice

Table 2. Mean value of condition numbers for LPA graphs
with different values of c.

Nodes Graphs c = 0 c = 0.05 c = 0.1

104 5 × 104 113.7 379.7 703.7
105 2.5 × 104 223.5 1058.4 1928.8
106 104 409.0 2648.5 4560.0
107 104 703.8 5897.6 9369.5

Table 3. Mean value of condition numbers for ER graphs,
1000 graphs for each line.

Nodes r c = 0 c = 0.05 c = 0.1

104 1.00 37.5 37.7 73.7
104 0.75 74.8 143.2 252.0
104 0.50 111.0 422.6 776.5
104 0.25 121.1 1068.5 2296.2
105 1.00 47.6 52.1 91.0
105 0.75 124.7 283.7 514.6
105 0.50 221.3 1200.8 2105.9
105 0.25 273.7 3194.1 8331.8
106 1.00 58.0 90.6 138.1
106 0.75 195.5 520.4 970.8
106 0.50 407.9 2996.9 4822.7
106 0.25 557.4 7762.2 14980.9
107 1.00 67.9 108.1 157.2
107 0.75 294.1 903.7 1749.4
107 0.50 703.8 6624.2 9823.2
107 0.25 1036.4 15835.3 25021.9

Table 4. Mean value of condition numbers for ATE graphs.

Nodes Graphs c = 0 c = 0.05 c = 0.1

104 105 107.8 194.2 353.1
105 105 192.6 559.5 1043.2
106 105 337.1 1448.5 2683.9
107 104 570.4 3433.8 6035.1

in fact, since the interest is on the tail) things become
even worse. Similar conclusions can be drawn for logarith-
mic bins.

Finally, for random networks generated with Linear
Preferential Attachment, Edge Redirection and Attach to
Edges models, numerical computations of the condition
numbers showed a severe ill condition of the least square
matrices, even for small sized networks (104 nodes). Also,
we confirmed the theoretical prediction of the condition
number becoming worse when attention is paid to the tail.
Clearly, in this context it is very difficult to compute the
power law exponent by the least square method due to
the lost of accuracy expected from the corresponding con-
dition numbers.
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